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Emails: laguayo@deti.ufc.br, guilherme@deti.ufc.br

Abstract— This paper presents some results of DANTE project: Detection of Anomalies and Novelties
in Time sEries with self-organizing networks, whose goal is to devise and evaluate self-organizing models for
detecting novelties or anomalies in univariate time series. The methodology to detect novelty consists in finding
non-parametric confidence intervals, who are computed from the quantization errors obtained at the training
phase, used at the testing phase as decision thresholds for classifying data samples as novelties/anomalies. We
compared the performance achieved among variations of the self-organizing neural architectures using as input
patterns a non-stationary data series composed by distinct dynamical regimes.
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Resumo— Este trabalho apresenta resultados do projeto DANTE: Detecção de Anomalias e Novidades em
séries TEmporais. O objetivo do projeto é avaliar o desempenho de diversas redes auto-organizadas ao detectar
anomalias/novidades em padrões de dados dinâmicos. A metodologia consiste em se determinar intervalos de
confiança não-paramétricos a partir de erros de quantização obtidos na fase de treinamento, usados posteriormente
na fase de teste como limiares de decisão para classificar amostras como sendo uma anomalia ou novidade.
Realizou-se uma comparação do desempenho de variantes da rede SOM, utilizando-se como padrões de entrada
uma série não-estacionária composta de regimes dinâmicos distintos.

Keywords— Detecção de Novidades, Séries Temporais, Modelos Lineares Locais, Mapas Auto-Organizáveis.

1 Introduction

Novelty detection1 methods comprise computa-
tional procedures developed to handle the difficult
problem of finding data samples which appears
to be, in some sense, inconsistent or incompatible
with a previous model for a data set. In recent
years, it has been observed an increasing number
of applications of the Self-Organizing Map (SOM)
to such a problem (Sarasamma and Zhu, 2006;
Barreto et al., 2005; Lee and Cho, 2005; Singh and
Markou, 2004), most of them dealing with static
data only, i.e. data for which the temporal dimen-
sion is an unimportant source of information.

However, several real-world applications pro-
vide data in a time-ordered fashion, usually in
the form of successive measurements of the mag-
nitude from one or several variables of interest,
giving rise to time series data. In industry, for
example, many process monitoring procedures in-
volves measuring various sensor readings continu-
ously in time to track the state of the monitored
system (Zorriassatine et al., 2005; Jamsa-Jounela
et al., 2003; Alhoniemi et al., 1999). In finan-
cial market, stock time series may present patterns
that can guide an investor in his/her investment
decisions in short or long-term horizons.

Anomaly detection in time series is partic-
ularly challenging due to the usual presence of

1Depending on the research field, anomaly detection
also comes under several designations, namely, anomaly
detection, outlier detection, fault detection and condition
monitoring.

noise, inserted by the measurement device, as well
of deterministic features - such as trend and sea-
sonality - that can mask the character of nov-
elty that may be present in data. Inherent non-
stationary processes, such as regime-switching
time series, also impose additional limitations on
time series modeling. Furthermore, some time se-
ries, e.g. econometric ones, may have have rela-
tively few samples, restricting the amount of data
available to extract information about its behav-
ior. Finally, time-critical applications, such as
fault detection and surveillance, requires on-line
anomaly detection.

Traditional approaches, such as statisti-
cal parametric modeling and hypothesis test-
ing (Markou and Singh, 2003a) can be success-
fully used to model static (i.e. memoryless) pat-
terns, as these techniques assume some degree of
stationarity of the data. On one hand, linear sta-
tionary dynamic processes can be handled by stan-
dard Box-Jenkins ARMA time series models. On
the other hand, highly nonlinear and nonstation-
ary dynamic patterns, such as chaotic or regime-
switching time series, require a more powerful ap-
proach in terms of learning and computational ca-
pabilities.

At this point the use of artificial neural net-
works (ANNs) have shown to be useful due to
their capability to act as general purpose non-
linear system identifier, generalizing the acquired
knowledge to unknown data. Most of the ANN-
based methods rely on supervised ANN models,



such as MLP and RBF architectures (Markou and
Singh, 2003b; Fancourt and Principe, 2004). How-
ever, a major drawback of such models in per-
forming anomaly detection in time series is the
asymmetry on the size of training data: labeled
data for training may not be always unavailable
or may be costly to collect. A plausible solu-
tion relies on the use of clustering algorithms to
find subsets of data with similar temporal struc-
ture (Liao, 2005; Liao, 2007).

However, despite the recent interest in apply-
ing unsupervised learning on time series (B. Ham-
mer, 2004; B. Hammer, 2005), few clustering-
based algorithms for anomaly detection have been
proposed to date. In particular, considering the
usage of SOM algorithm as a clustering tool for
anomaly detection systems, the former assertion
is even stronger. Most of the SOM-based ap-
proaches usually converts the time series into a
non-temporal representation (e.g. spectral fea-
tures computed through Fourier transform) and
use it as input to the usual SOM (Wong et
al., 2006). Another common approach is to use
fixed-length tapped delay lines at the input of the
SOM, again converting the time series into a spa-
tial representation (Fu et al., 2001).

Since the early 1990’s, several temporal vari-
ants of the SOM algorithm have been pro-
posed (see (Barreto and Araújo, 2001) for a re-
view) with the aim of performing better than
static clustering methods when dealing with time
series data. However, to the best of our knowl-
edge, such temporal SOMs have never been used
for anomaly/novelty detection purposes.

From the exposed, the aim of this paper
is to evaluate the performance of several self-
organizing networks in the detection of anoma-
lies/novelties in dynamic data patterns. For
this purpose, we first describe clustering-based
approaches which uses variations of the well-
known SOM architecture, such as the Kangas’
model (Kangas et al., 1990), TKM-Temporal Ko-
honen Map (Chappell and Taylor, 1993) and
RSOM-Recursive SOM (Koskela et al., 1998). Ad-
ditionally, the performance of the Fuzzy ART net-
work (Carpenter et al., 1991) is also evaluated. All
these algorithms were trained on-line and com-
puter simulations carried out to compare their
performances.

The remainder of the paper is divided as
follows. In Section 2 we describe the self-
organizing algorithms used in this work to per-
form anomaly/novelty detection in time series. In
this section, we also present in detail the decision-
support methodology used to run the simulations.
In Section 4 the numerical results and comments
on the performance of all the simulated algorithms
are reported. The paper is concluded in Section 5.

2 Time Series Clustering for Anomaly
Detection

In this section we describe self-organizing ap-
proaches adapted to perform anomaly detection
in time series. In this paper we limit the scope of
our description to prototype-based clustering al-
gorithms. Here is assumed that the algorithms are
trained on-line as the data is collected, and input
vectors are built through a fixed-length window,
sliding over the time series of interest. Thus, at
time step t, the input vector is given by

x+(t) = [x(t) x(t− 1) · · · x(t− p + 1)]T , (1)

where p ≥ 1 is the memory-depth parameter.
Weight updating is allowed for a fixed number of
steps, Tmax. The first three algorithms to be de-
scribed are based on the SOM algorithm, while the
third one belongs to the family of ART (Adaptive
Resonance Theory) architectures. Once the net-
works are trained, decision thresholds are com-
puted based on the quantization errors for the
SOM-based methods. ART-based models have an
intrinsic novelty-detection mechanism, which can
also be used for anomaly detection purposes.

2.1 Standard SOM

Usual SOM training is carried out using the vector
x+(t) as input. Thus, the winning neuron, i∗(t),
is given by

i∗(t) = arg min
∀i
‖x+(t)−wi(t)‖, i = 1, . . . , Q,

(2)
where Q is the number of neurons and t denotes
the current iteration of the algorithm. Accord-
ingly, the weight vectors are updated by the fol-
lowing learning rule:

wi(t + 1) = wi(t) + η(t)h(i∗, i; t)[x+(t)−wi(t)],
(3)

where h(i∗, i; t) is a gaussian function which con-
trol the degree of change imposed to the weight
vectors of those neurons in the neighborhood of
the winning neuron:

h(i∗, i; t) = exp
(
−‖ri(t)− ri∗(t)‖2

σ2(t)

)
, (4)

where σ(t) defines the radius of the neighborhood
function at iteration t, and ri(t) and ri∗(t) are the
coordinates of neurons i andi∗ in the output ar-
ray, respectively. The learning rate, 0 < η(t) < 1,
should decay with time to guarantee convergence
of the weight vectors to stable states. In this pa-
per, we use η(t) = η0 (ηT /η0)

−(t/Tmax), where η0

is the initial value of η, and ηT is its final value
after Tmax training iterations. The variable σ(t)
should decay in time in a similar fashion.



2.2 Kangas’ Model

Several SOM-based algorithms for time series clus-
tering have been proposed but they have not been
used for anomaly detection purposes yet. Kangas’
model (Kangas et al., 1990) is one of the simplest
temporal SOM algorithms available. The under-
lying idea of Kangas’ model consists in performing
a first-order IIR filtering on the input vector x+(t)
as follows:

x(t) = (1− λ)x(t− 1) + λx+(t), (5)

where 0 < λ < 1 is a memory decay -or memory
depth- parameter. The filtered vector x(t) is then
presented to the SOM algorithm, which follows its
usual training procedure.

2.3 TKM-Temporal Kohonen Map

The TKM model places the temporal memory at
the output of the SOM network, by the mainte-
nance of the activation ai(t) for each neuron:

ai(t) = λai(t− 1)− 1
2
‖x(t)−wi(t)‖2, (6)

with 0 < λ < 1 as the same memory depth defined
in the Kanga’s model. Now, the winner i∗ is the
one with the highest value for the activation, i.e,
it satisfies

ai∗(t) = max
i
{ai(t)}, i = 1, 2, . . . , Q, (7)

and its weights are updated as in Eq. 3.

2.4 RSOM-Recurrent SOM

In this variant, the difference x′(t) = x+(t)−wi(t)
contains the memory of the past status. Defining

yi(t) = λx′(t) + (1− λ)yi(t− 1) (8)

and the winner as

i∗(t) = arg min
i
{yi(t)}, i = 1, 2, . . . , Q, (9)

the learning rule is now

wi(t + 1) = wi(t) + α(t)h(i∗, i; t)yi(t), (10)

where the memory is now taken into account when
updating the weights of the winner. Note also that
Eq. (8) has the same IIR structure of the Eq. 5.

2.5 The Fuzzy ART Algorithm

This paper also evaluates the performance of the
Fuzzy ART algorithm (Carpenter et al., 1991) on
anomaly detection in time series, due to its sim-
plicity of implementation and low computational
cost. The input vector x+(t) is presented to a

competitive layer of Q neurons. The winning neu-
ron i∗ is selected if its choice function Ti∗ is the
highest one among all neurons:

i∗(t) = arg max
∀i

{Ti(t)} , (11)

where the choice function Ti is computed as fol-
lows:

Ti(t) =
|x+(t) ∧wi(t)|

ε + |wi(t)| , (12)

where 0 < ε ¿ 1 is a very small constant, and |u|
denotes the L1-norm of the vector u. The symbol
∧ denotes the component-wise minimum operator,
i.e.

x+
j (t) ∧ wij(t) ≡ min

{
x+

j (t), wij(t)
}

. (13)

The next step involves a test for resonance. If

|x+(t) ∧wi∗(t)|
|x+(t)| ≥ ρ, (14)

the weights of the winning neuron i∗(t) are up-
dated as follows:

wi∗(t + 1) = β
(
x+(t) ∧wi∗(t)

)
+ (1− β)wi∗(t)

(15)
where the constants 0 < ρ < 1 and 0 < β < 1
are the vigilance parameter and the learning rate,
respectively.

If the resonance test for the current winning
neuron i∗(t) fails, then another neuron is selected
as the winner, usually the one with the second
highest value for Ti(t). If this neuron also fails,
then the one with the third highest value for Ti(t)
is selected, and so on until one of the selected win-
ning neurons i∗(t) matches Eq. 14. If none of the
existing prototype vectors resonates with the cur-
rent input vector, then the input vector is declared
novel and turned into a new prototype vector.

The parameter ρ controls the sensitivity of the
Fuzzy ART algorithm to new input vectors. If
ρ → 1, more prototypes are created in the compet-
itive layer, increasing the number of false alarms
(false positives). If ρ → 0, the number of proto-
types decreases, increasing the number of missed
detection (false negatives).

3 Detection Methodology

Unlike the Fuzzy ART algorithm, the SOM-based
methods previously described do not have an
intrinsic mechanism to detect novel or anoma-
lous data. However, it has become common
practice (Sarasamma and Zhu, 2006; Barreto et
al., 2005; Alhoniemi et al., 1999) to use the quan-
tization error

eq(x+,wi∗ ; t) = ‖x+(t)−wi∗(t)‖, (16)

as a measure of the degree of proximity of x+(t)
to a statistical representation of normal behavior



encoded in the weight vectors of the SOM vari-
ants. Once the network has been trained, we
present the training data vectors once again to
this network. From the resulting quantization er-
rors {eq(x+,wi∗ ; t)}N

t=1, computed for all train-
ing vectors, we compute decision thresholds for
the anomaly detection tests. For a successfully
trained network, the sample distribution of these
quantization errors should reflect the ’known’ or
’normal’ behavior of the input variable whose time
series model is being constructed.

Several procedures to compute decision
thresholds have been developed in recent years,
most of them based on well-established statistical
techniques (Hodge and Austin, 2004)), but we ap-
ply the method recently proposed in (Barreto et
al., 2005). For a given significance level α, we are
interested in an interval within which we can cer-
tainly find a percentage 100(1−α) (e.g. α = 0.05)
of normal values of the quantization error. Hence,
we compute the lower and upper limits of this in-
terval as follows:

• Lower Limit (τ−): This is the 100α
2 th per-

centile2 of the distribution of quantization er-
rors associated with the training data vectors.

• Upper Limit (τ+): This is the 100(1− α
2 )th

percentile of the distribution of quantization
errors associated with the training vectors.

Once the decision interval [τ−, τ+] has been com-
puted, any anomalous behavior of the time series
can be detected on-line by means of the simple
rule:

IF eq(x+,wi∗ ; t) ∈ [τ−, τ+]
THEN x+(t) is NORMAL (17)
ELSE x+(t) is ABNORMAL

4 Simulations

The feasibility of the proposed approach was eval-
uated using input signals derived from four dif-
ferent dynamic systems, and three of them were
realizations of chaotic series. The first one is com-
posed by the x component of Lorenz equations

ẋ = σL(y − x), ẏ = x(αL − z)− y, ż = xy − εLz,
(18)

which exhibits chaotic dynamics for σL = 10,
αL = 28 and εL = 8/3. The second and third
cases as well two different Mackey-Glass series,
with distinct τ delays:

ẋ = Rx(t) + P
x(t− τ)

(1 + x(t− τ)10)
, (19)

2The percentile of a distribution of values is a number
Nα such that a percentage 100(1−α) of the sample values
are less than or equal to Nα.
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Figura 1: Samples of time series used in the sim-
ulations.
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Figura 2: Quantization error ei∗(t). Each testing
sequence has k = 1000 samples.

with P = 0.2, R = −0.1 and τ = 17 or τ =
35. The fourth case is an autoregressive process
AR(2):

x(n+1) = 1.9x(n−1)−0.99x(n−2)+n(t), (20)

with n(t) is a random sample from a gaussian
white noise process with zero mean and variance
σn = 10−3. Figure 1 depicts 300 samples of each
signal.

The novelty detection experiment was de-
signed to perform the on-line detection of an
anomalous signal, after training the networks with
a sequence considered NORMAL. This role was
assigned to the Lorenz series, leaving the Mackey-
Glass and the AR process as representatives of an
ABNORMAL behavior. Only for purposes of
clarity on the presentation of results, all different
testing sequences were presented sequentially: a
set of k samples from each series was used as in-
put to the four networks, followed by k samples of
the next series.

Figure 2 shows the quantization error ei∗(t)
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collected from the winning neuron i∗ for the Kan-
gas model, when the first k = 1000 samples of
the training set consisted of samples generated by
the Lorenz equations. It is possible to notice (i)
the low prediction error for the first k samples,
showing the feasibility of the proposed method de-
scribed in Section 3; and (ii) that when a differ-
ent pattern is presented, the quantization error is
higher.

It is illustrative to observe the cumulative dis-
tribution function (CDF) of the quantization er-
rors for the studied networks. Taken as example,
Figure 3 depicts the CDFs for ei∗(t) obtained from
all the different testing sequences for the TKM
network, where it is possible to verify that AB-
NORMAL behavior results in distributions with
higher variance. The same general behavior was
observed for all the networks, but the SOM.

A comparative analysis of the performances of
the presented models can be achieved straightfor-
wardly using the percentages of true positive (TP)
and false positive (FP) ratios. Here, a true posi-
tive is the correct detection of an ABNORMAL
sample x(t), when the testing signal belongs to
novel pattern, and a false positive is the uncorrect
novelty detection when a testing sample belongs
to the training set (i.e. it has an already modeled
dynamics).

The point with coordinates (FP, TP) is a
point in Receiver Operating Characteristic (ROC)
space, and can be used to visually identify good
and bad classifiers. For instance, a perfect binary
classifier should achieve the (0,1) point at ROC
space. Now, if we change the percentile Nα, the
decision interval [τ−, τ+] at Eq. 17 is modified,
and a set of points in ROC space can be derived,
allowing to verify the performance of the classi-
fiers under different degrees of tolerance for the
prediction error.

Additionally, different configurations for the

input signals and network setup were analyzed, us-
ing variations on general parameters, such as the
size of memory-depth p, noise variance σ2

ε , num-
ber of neurons Q, as well specific parameters, such
as Fuzzy-ART ρ and β and memory decay λ. Fig-
ure 4 shows a typical result for the comparative
performance among the networks, obtained with
Q = 20 neurons and memory-depth parameter set
to p = 10.

For the set of time series used in this pa-
per, all SOM variations achieved similar perfor-
mance, followed closely by Fuzzy-ART network.
It worth notice that the memory structures intro-
duced by Kanga’s model, TKM and RSOM re-
sults in the great difference on the performance
obtained, when compared to the standard SOM
model, which has no internal structure to han-
dle temporal series. Fuzzy-ART also performed
closely to SOM variations, even with no explicit
structure to process time-series. Its inherent nov-
elty detection procedure, defined by a dissimilarity
measure by Eq. (14) can explain the good perfor-
mance. Finally, the proposed method appears as
a feasible candidate to perform efficient novelty
detection, using the methodology defined at the
Section 3.

The optimal performance of a binary classi-
fier may be used as a reference to choose the op-
timal thresholds for the interval [τ−, τ+]. Fig-
ure 5 shows the distance of each (fp,tp) point
for each network to the best possible performance
at the (0,1) coordinates. Defining the optimum
point as the minimal distance between the men-
tioned points, the best threshold may be calcu-
lated off-line if the data sets for ABNORMAL
and NORMAL samples are at disposal.

5 Conclusions

This paper introduced some results of the DANTE
project, whose goal is to devise and evalu-
ate self-organizing models for detecting novelties
or anomalies in univariate time series. Non-
parametric confidence intervals are computed
from the quantization errors obtained at the train-
ing phase and used as decision thresholds for de-
tecting novelties/anomalies. We compared the
performance achieved among variations of the self-
organizing neural architectures, as well the Fuzzy-
ART performance, to the same problem. Future
work on the subject investigates mechanisms of
dynamically set the thresholds [τ−, τ+], leading
to self-adjustment of optimal performance.
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Barreto, G. A. and Araújo, A. F. R. (2001). Time
in self-organizing maps: An overview of mod-
els, International Journal of Computer Research
10(2): 139–179.

Barreto, G. A., Mota, J. C. M., Souza, L. G. M., Frota,
R. A. and Aguayo, L. (2005). Condition moni-
toring of 3G cellular networks through competi-
tive neural models, IEEE Transactions on Neural
Networks 16(5): 1064–1075.

Carpenter, G. A., Grossberg, S. and Rosen, D. B.
(1991). Fuzzy ART: Fast stable learning and cat-
egorization of analog patterns by an adaptive res-
onance system, Neural Networks 4(6): 759–771.

Chappell, G. J. and Taylor, J. G. (1993). The tem-
poral Kohonen map, Neural Networks 6(3): 441–
445.

Fancourt, C. L. and Principe, J. C. (2004). On the use
of neural networks in the generalized likelihood
ratio test for detecting abrupt changes in signals,
Proceedings of the 2000 IEEE-INNS-ENNS In-
ternational Joint Conference on Neural Networks
(IJCNN’00), Vol. 3, pp. 243–248.

Fu, T. C., Chung, F. L., Ng, V. and Luk, R.
(2001). Pattern discovery from stock time series
using self-organizing maps, Workshop Notes of
KDD2001 Workshop on Temporal Data Mining,
pp. 27–37.

Hodge, V. J. and Austin, J. (2004). A survey of
outlier detection methodologies, Artificial Intel-
ligence Review 22(2): 85–126.

Jamsa-Jounela, S. L., Vermasvuori, M., Enden, P. and
Haavisto, S. (2003). A process monitoring system
based on the kohonen self-organizing maps, Con-
trol Engineering Practice 11(1): 83–92.

Kangas, J. A., Kohonen, T. K. and Laaksonen, J.
(1990). Variants of self-organizing maps, IEEE
Transactions on Neural Networks 1(1): 93–99.

Koskela, T., Varsta, M., Heikkonen, J. and Kaski,
K. (1998). Time series prediction using recur-
rent SOM with local linear models, International
Journal of Knowledge-based Intelligent Engineer-
ing Systems 2(1): 60–68.

Lee, H.-J. and Cho, S. (2005). SOM-based novelty de-
tection using novel data, Lecture Notes on Com-
puter Science 3578: 359–366.

Liao, T. W. (2005). Clustering of time series data - a
survey, Pattern Recognition 38(11): 1857–1874.

Liao, T. W. (2007). A clustering procedure for ex-
ploratory mining of vector time series, Pattern
Recognition 40: 2250–2562.

Markou, M. and Singh, S. (2003a). Novelty detection:
a review - part 1: Statistical approaches, Signal
Processing 83: 2481–2497.

Markou, M. and Singh, S. (2003b). Novelty detec-
tion: A review - part 2: Neural network based
approaches, Signal Processing 83: 2499–2521.

Sarasamma, S. T. and Zhu, Q. A. (2006). Min-max
hyperellipsoidal clustering for anomaly detection
in network security, IEEE Transactions on Sys-
tems, Man and Cybernetics B-36(4): 887–901.

Singh, S. and Markou, M. (2004). An approach to
novelty detection applied to the classification of
image regions, IEEE Transactions on Knowledge
and Data Engineering 16(4): 1041–4347.

Wong, M., Jack, L. and Nandi, A. (2006). Modi-
fied self-organising map for automated novelty
detection applied to vibration signal monitor-
ing, Mechanical Systems and Signal Processing
20(3): 593–610.

Zorriassatine, F., Al-Habaibeh, A., Parkin, R., Jack-
son, M. and Coy, J. (2005). Novelty detection for
practical pattern recognition in condition mon-
itoring of multivariate processes: a case study,
International Journal of Advanced Manufactur-
ing Technology 25(9-10): 954–963.


